用spaCy实现文本分类【NLP】

spaCy是一个流行、易用的Python自然语言处理包。spaCy具有相当高的处理精度, 而且处理速度极快。不过,由于spaCy还是一个相对比较新的NLP开发包,因此它 还没有像NLTK那样被广泛采用,而且目前也没有太多的教程。在本文中,我们将 展示如何使用spaCy来实现文本分类,并在结尾提供完整的实现代码。

1、数据准备

对于年轻的研究者而言,寻找并筛选出合适的学术会议来投稿,是一件相当耗时 耗力的事情。首先下载会议处理数据集, 我们接下来将会议分类论文。

2、浏览数据

先快速看一下数据:

1
2
3
4
5
6
7
8
9
10
11
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import base64
import string
import re
from collections import Counter
from nltk.corpus import stopwords
stopwords = stopwords.words('english')df = pd.read_csv('research_paper.csv')
df.head()

结果如下:

可以用下面的代码确认数据集中没有丢失的值:

1
df.isnull().sum()

结果如下:

1
2
3
Title 0
Conference 0
dtype: int64

现在我们把数据拆分为训练集和测试集:

1
2
3
4
5
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.33, random_state=42)print('Research title sample:', train['Title'].iloc[0])
print('Conference of this paper:', train['Conference'].iloc[0])
print('Training Data Shape:', train.shape)
print('Testing Data Shape:', test.shape)

运行结果如下:

1
2
3
4
Research title sample: Cooperating with Smartness: Using Heterogeneous Smart Antennas in Ad-Hoc Networks.
Conference of this paper: INFOCOM
Training Data Shape: (1679, 2)
Testing Data Shape: (828, 2)

数据集包含了2507个论文标题,已经按会议分为5类。下面的图表概述了论文在不同会议中的分布情况:

下面的代码是使用spaCy进行文本预处理的一种方法,之后我们将尝试找出在前两个类型会议(INFOCOM &ISCAS) 的论文中用的最多的单词:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import spacynlp = spacy.load('en_core_web_sm')
punctuations = string.punctuationdef cleanup_text(docs, logging=False):
texts = []
counter = 1
for doc in docs:
if counter % 1000 == 0 and logging:
print("Processed %d out of %d documents." % (counter, len(docs)))
counter += 1
doc = nlp(doc, disable=['parser', 'ner'])
tokens = [tok.lemma_.lower().strip() for tok in doc if tok.lemma_ != '-PRON-']
tokens = [tok for tok in tokens if tok not in stopwords and tok not in punctuations]
tokens = ' '.join(tokens)
texts.append(tokens)
return pd.Series(texts)INFO_text = [text for text in train[train['Conference'] == 'INFOCOM']['Title']]IS_text = [text for text in train[train['Conference'] == 'ISCAS']['Title']]INFO_clean = cleanup_text(INFO_text)
INFO_clean = ' '.join(INFO_clean).split()IS_clean = cleanup_text(IS_text)
IS_clean = ' '.join(IS_clean).split()INFO_counts = Counter(INFO_clean)
IS_counts = Counter(IS_clean)INFO_common_words = [word[0] for word in INFO_counts.most_common(20)]
INFO_common_counts = [word[1] for word in INFO_counts.most_common(20)]fig = plt.figure(figsize=(18,6))
sns.barplot(x=INFO_common_words, y=INFO_common_counts)
plt.title('Most Common Words used in the research papers for conference INFOCOM')
plt.show()

INFORCOM的运行结果如下:

接下来计算ISCAS:

1
2
3
4
5
IS_common_words = [word[0] for word in IS_counts.most_common(20)]
IS_common_counts = [word[1] for word in IS_counts.most_common(20)]fig = plt.figure(figsize=(18,6))
sns.barplot(x=IS_common_words, y=IS_common_counts)
plt.title('Most Common Words used in the research papers for conference ISCAS')
plt.show()

运行结果如下:

在INFOCOM中的顶级词是“networks”和“network”,显然这是因为INFOCOM是网络领域的会议。 ISCAS的顶级词是“base”和“design”,这揭示出ISCAS是关于数据库、系统设计等课题的会议。

3、用spaCy进行机器学习

首先我们载入spacy模型并创建语言处理对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.metrics import accuracy_score
from nltk.corpus import stopwords
import string
import re
import spacy
spacy.load('en')
from spacy.lang.en import English
parser = English()

下面是另一种用spaCy清理文本的方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
STOPLIST = set(stopwords.words('english') + list(ENGLISH_STOP_WORDS))
SYMBOLS = " ".join(string.punctuation).split(" ") + ["-", "...", "”", "”"]class CleanTextTransformer(TransformerMixin): def transform(self, X, **transform_params):
return [cleanText(text) for text in X] def fit(self, X, y=None, **fit_params):
return selfdef get_params(self, deep=True):
return {}

def cleanText(text):
text = text.strip().replace("\n", " ").replace("\r", " ")
text = text.lower()
return textdef tokenizeText(sample):
tokens = parser(sample)
lemmas = []
for tok in tokens:
lemmas.append(tok.lemma_.lower().strip() if tok.lemma_ != "-PRON-" else tok.lower_)
tokens = lemmas
tokens = [tok for tok in tokens if tok not in STOPLIST]
tokens = [tok for tok in tokens if tok not in SYMBOLS]
return tokens

下面我们定义一个函数来显示出最重要的特征,具有最高的相关系数的特征:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def printNMostInformative(vectorizer, clf, N):
feature_names = vectorizer.get_feature_names()
coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
topClass1 = coefs_with_fns[:N]
topClass2 = coefs_with_fns[:-(N + 1):-1]
print("Class 1 best: ")
for feat in topClass1:
print(feat)
print("Class 2 best: ")
for feat in topClass2:
print(feat)vectorizer = CountVectorizer(tokenizer=tokenizeText, ngram_range=(1,1))
clf = LinearSVC()

pipe = Pipeline([('cleanText', CleanTextTransformer()), ('vectorizer', vectorizer), ('clf', clf)])# data
train1 = train['Title'].tolist()
labelsTrain1 = train['Conference'].tolist()test1 = test['Title'].tolist()
labelsTest1 = test['Conference'].tolist()
# train
pipe.fit(train1, labelsTrain1)# test
preds = pipe.predict(test1)
print("accuracy:", accuracy_score(labelsTest1, preds))
print("Top 10 features used to predict: ")

printNMostInformative(vectorizer, clf, 10)
pipe = Pipeline([('cleanText', CleanTextTransformer()), ('vectorizer', vectorizer)])
transform = pipe.fit_transform(train1, labelsTrain1)vocab = vectorizer.get_feature_names()
for i in range(len(train1)):
s = ""
indexIntoVocab = transform.indices[transform.indptr[i]:transform.indptr[i+1]]
numOccurences = transform.data[transform.indptr[i]:transform.indptr[i+1]]
for idx, num in zip(indexIntoVocab, numOccurences):
s += str((vocab[idx], num))

运行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
accuracy: 0.7463768115942029
Top 10 features used to predict:
Class 1 best:
(-0.9286024231429632, ‘database’)
(-0.8479561292796286, ‘chip’)
(-0.7675978546440636, ‘wimax’)
(-0.6933516302055982, ‘object’)
(-0.6728543084136545, ‘functional’)
(-0.6625144315722268, ‘multihop’)
(-0.6410217867606485, ‘amplifier’)
(-0.6396374843938725, ‘chaotic’)
(-0.6175855765947755, ‘receiver’)
(-0.6016682542232492, ‘web’)
Class 2 best:
(1.1835964521070819, ‘speccast’)
(1.0752051052570133, ‘manets’)
(0.9490176624004726, ‘gossip’)
(0.8468395015456092, ‘node’)
(0.8433107444740003, ‘packet’)
(0.8370516260734557, ‘schedule’)
(0.8344139814680707, ‘multicast’)
(0.8332232077559836, ‘queue’)
(0.8255429594734555, ‘qos’)
(0.8182435133796081, ‘location’)

接下来计算精度、召回、F1分值:

1
2
from sklearn import metrics
print(metrics.classification_report(labelsTest1, preds, target_names=df['Conference'].unique()))

运行结果如下;

1
2
3
4
5
6
7
8
9
10
                 precision    recall  f1-score   support


VLDB 0.75 0.77 0.76 159
ISCAS 0.90 0.84 0.87 299
SIGGRAPH 0.67 0.66 0.66 106
INFOCOM 0.62 0.69 0.65 139
WWW 0.62 0.62 0.62 125

avg / total 0.75 0.75 0.75 828

好了,我们已经用spaCy完成了对论文的分类,完整源码下载: GITHUB


原文链接:Machine Learning for Text Classification Using SpaCy in Python

汇智网翻译,转载请标明出处