Streamlit - 机器学习工具开发框架

Streamlit是第一个专门针对机器学习和数据科学团队的应用 开发框架,它是开发自定义机器学习工具的最快的方法,你可以认为 它的目标是取代Flask在机器学习项目中的地位,可以帮助机器学习 工程师快速开发用户交互工具。

相关链接:Streamlit API中文手册 | Streamlit学习交流群

1、Hello world

Streamlit应用就是Python脚本,没有隐含的状态,你可以使用函数调用 重构。只要你会写Python脚本,你就会开发Streamlit应用。例如,下面 的代码使用streamlit的通用显示方法write 在网页中输出Hello, world!

1
2
import streamlit as st
st.write('Hello, world!')

结果如下:

streamlit

2、使用UI组件

Streamlit将组件视为变量,在Streamlit中没有回调,每一个交互都是 简单地返回,从而确保代码干净。例如下面的代码使用方法slider 创建一个可交互的滑动拉杆,并显示其当前值:

1
2
3
4
import streamlit as st

x = st.slider('x')
st.write(x, 'squared is', x * x)

结果如下:

streamlit

3、数据重用和计算

如果你要下载大量数据或者运行复杂的计算该怎么实现?关键在于 安全地重用数据。Streamlit引入了缓存原语可以让Steamlit应用 安全、轻松的重用信息。例如,下面的代码只需要从Udacity的自动 驾驶车项目下载一次数据,从而得到一个简单、快速的应用:

1
2
3
4
5
6
7
8
9
10
import streamlit as st
import pandas as pd

# Reuse this data across runs!
read_and_cache_csv = st.cache(pd.read_csv)

BUCKET = "https://streamlit-self-driving.s3-us-west-2.amazonaws.com/"
data = read_and_cache_csv(BUCKET + "labels.csv.gz", nrows=1000)
desired_label = st.selectbox('Filter to:', ['car', 'truck'])
st.write(data[data.label == desired_label])

结果如下:

streamlit

简而言之,Streamlit的工作方式如下:

  • 对于用户的每一次交互,整个脚本从头到尾执行一遍
  • Streamlit基于UI组件的状态给变量赋值
  • 缓存让Streamlit可以避免重复请求数据或重复计算

或者参考下图:

streamlit

如果上面的内容还没有说清楚,你可以直接上手尝试Streamlit!

1
2
3
4
5
$ pip install --upgrade streamlit 
$ streamlit hello
You can now view your Streamlit app in your browser.
Local URL: http://localhost:8501
Network URL: http://10.0.1.29:8501

这会自动打开本地的web浏览器并访问Streamlit应用:

streamlit

4、实例:自动驾驶数据集工具

下面的Streamlit应用让你可以在整个Udacity自动驾驶车辆照片数据集 中进行语义化搜索,可视化人工标注,并且可以实时运行一个YOLO 目标检测器:

streamlit

整个应用只有300行Python代码,绝大多数是机器学习代码。实际上 其中只有23个Streamlit调用。你可以尝试自己运行:

1
2
$ pip install --upgrade streamlit opencv-python
$ streamlit run https://raw.githubusercontent.com/streamlit/demo-self-driving/master/app.py

原文链接:Turn Python Scripts into Beautiful ML Tools

汇智网翻译整理,转载请标明出处