Hyperledger Fabric链码开发的8条军规

我相信智能合约(链码)是Hyperledger Fabric区块链网络的核心。正确开发 链码可以真正发挥一个安全区块链的优势,反之则会带来 灾难性的后果。在这篇文章里我不打算探讨Hyperledger Fabric链码设计的特定模式的 好与坏,而是希望分享我在开发若干Hyperledger Fabric概念验证应用过程中 总结的一些基本准则。

Hyperledger Fabric区块链开发教程: Node.js | Java | Golang

1、启用peer节点的开发模式

使用开发模式开启你的Hyperledger Fabric链码开发流程。这一点无论 怎么强调都不过分,这会节省你大量的时间和精力,因为你可以自由地 修改代码而无需重新部署并激活链码,也无需一遍遍地重启网络。

参考文档:https://gist.github.com/arnabkaycee/d4c10a7f5c01f349632b42b67cee46db

2、使用Fabric链码的日志

这可能是能帮助你调试Hyperledger Fabric链码并快速找出链码bug的 第一个有用的技能。链码日志很简单易用,使用Fabric内建的logger即可。

参考文档:

3、避免在Fabric链码中使用全局键

在开发Hyperledger Fabric链码时,我们经常会发现在搜索数据方面 限制很多,因此要跟踪在键值库中注册的键,我们有时会尝试使用某些全局数据。

例如,当你再Hyperledger Fabric应用中跟踪注册的弹珠时,可能 想创建一个全局的计数器以便生成弹珠的下一个ID。但是这么做的时候, 你就引入了对这个变量的依赖。在开始的时候这看起来不是个问题,但是 当你提交并发交易时就会出错。为什么?让我解释一下。

看一下链码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package main
import (
//other imports
"github.com/hyperledger/fabric/core/chaincode/shim"
pb "github.com/hyperledger/fabric/protos/peer"
)

//不要这么做!
totalNumberOfMarbles := 0

func (t *SimpleChaincode) initMarble(stub shim.ChaincodeStubInterface, args []string) pb.Response {
var err error

marbleId := fmt.Sprintf("MARBLE_%06d",totalNumberOfMarbles)
marbleName := args[0]
color := strings.ToLower(args[1])
owner := strings.ToLower(args[3])
size, err := strconv.Atoi(args[2])

//other code to initialize
objectType := "marble"
marble := &marble{objectType, marbleId, marbleName, color, size, owner}

//--------------CODE SMELL----------------
//BIG source of Non-determinism as well as performance hit.
totalNumberOfMarbles = totalNumberOfMarbles + 1
//--------------CODE SMELL----------------


//regular stuff...
err = stub.PutState(marbleId, marbleJSONasBytes)
if err != nil {
return shim.Error(err.Error())
}
}

那么,为什么我不喜欢这样?

第一个原因。假设你已经完成这个Fabric链码,一切都很正常,直到有一天, 某个运行这个链码的peer节点,崩溃了。虽然账本数据还在,但是内部有些 可怕的事情已经发生了。你可能重新启动peer节点,起初一切看起来都正常。 但是突然,这个节点背书的所有交易都开始失败了。为什么?就是因为 那个全局计数变量已经不能正确跟踪真实的值了。其他的peer节点都 计数到比如15K了,而这个节点突然从零开始计数,你的弹珠的ID又 从零开始了。因此,当你将这个交易发送给排序节点(Orderer)并到达提交节点(Peer) 时,提交节点上的验证系统(Validation System Chaincode)会比较所有背书交易的提议响应, 同时检查是否有足够的签名存在,只要有一个提议响应不匹配,提交节点就会抛出一个 ENDORSEMENT_POLICY_FAILURE异常。

第二个原因。现在让我们尝试解决上面的问题,在Fabric链码的最后添加如下的代码:

1
stub.PutState("marble_count", totalNumberOfMarbles)

这样会好一些吗?Noooooooooooooooooo!

想象一下,有两个并发交易都试图插入新的弹珠。

例如,一个交易要将marble_count的值更新为34,marble_count状态的新版本为10。 而另一个交易则要将marble_count的值更新为35, 它也认为marble_count的新版本为10。 记住,由于这两个交易是并发的,两个交易看到的都是current_version(marble_count) = 09。

现在其中一个交易将在另一个交易之前到达Fabric的排序节点,marble_count键已经更新到 新的值,这时marble_count的版本已经是10,因此后到的交易将失败,因为 marble_count的版本已经是10 ,而后续交易还认为它读的是版本09并且将 更新到版本10。这是区块链中经典的双花问题(double spending)。

Hyperledger Fabric在提交交易时使用一种优化的锁模型。正如我已经解释过的, 提议响应由客户端从背书节点采集,然后发送给排序节点并最终由排序节点将其 分发给提交节点。着这个两步过程中,如果有些在背书阶段读取的键的版本发生了变化, 你就会得到MVCC_READ_CONFLICT错误。当存在并发交易同时更新相同的键时,就有 可能出现这个问题。

关于这一点的详细说明,可以参考这篇文章

4、聪明地使用CouchDB查询

Couch DB查询(又称为Mongo查询)在搜索Fabric节点的键值库中的数据时非常有用, 但是有一些坑你需要注意。

  • Couch DB查询不会修改交易的READ SET

Mongo查询仅用来查询节点的键值库也就是状态库。它不会修改交易的read set。这可能会在交易中 导致幻读(phantom reads)。

  • 只能搜索已经存入CouchDB的数据

不要试图用Mongo查询按键名搜索。虽然你可以访问CouchDB的Fauxton控制台, 但你无法按键查询。例如,不允许查询channelName\0000KeyName。更好 的方法时将键作为你自己数据的属性保存。

5、编写确定性的Fabric链码

永远不要编写不确定的链码。意思是说如果我在多个不同的时间、不同的环境下 执行链码,总应该得到相同的结果。例如,避免使用像rand.New(...)t := time.Now() 这样的代码,或者依赖于某个没有在账本中持久化的变量。

这是因为,如果生成的读写集不一样,Hyperledger Fabric的验证系统链码(Validation System Chaincode) 会拒绝交易并抛出ENDORSEMENT_POLICY_FAILURE异常。

6、调用其他通道的Fabric链码时要小心

在链码中调用同一个通道中的另一个链码没问题,但是要了解的是,如果 是要调用另一个通道的链码,你只能得到链码方法的返回结果,而不会在 另一个通道账本中有任何提交。目前,跨通道的链码调用不会修改数据,因此, 一个交易一次只能写入一个通道。

7、记得设置Fabric链码的执行超时时间

在高负载的情况下,你的Hyperledger Fabric链码可能不会在30s内完成。因此一个好的实践是 根据需求定制链码执行超时值。这是由core.yaml中的参数决定的。你可以 在docker compose 文件中如下设置:

1
Example: CORE_CHAINCODE_EXECUTETIMEOUT=60s

8、避免从Fabric链码中访问外部资源

访问外部资源可能会暴露系统漏洞并给你的Hyperledger Fabric链码引入安全威胁。无论如何 你不会希望外部资源中的恶意代码影响你的链码逻辑。因此请尽可能的避免 再Fabric链码中访问区块链外部的资源。


原文链接:General Guidelines for writing Hyperledger Fabric Chaincodes.